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Abstract Fluorescence characteristic of 8-anilinonaphthalene-
1-sulfonic acid (ANS) in ethanol-water mixture in combination
with partial least square (PLS) analysis was used to propose a
simple and sensitive analytical procedure for monitoring the
adulteration of ethanol by water. The proposed analytical pro-
cedure was found to be capable of detecting even small adul-
teration level of ethanol by water. The robustness of the proce-
dure is evident from the statistical parameters such as square of
correlation coefficient (R2), root mean square of calibration
(RMSEC) and root mean square of prediction (RMSEP) that
were found to be well with in the acceptable limits.
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Introduction

In recent years, ethanol has been considered as an alternate for
petroleum based fuels such as gasoline and diesel [1–7]. Eth-
anol is a renewable source of energy that can be fermented and
extracted from the natural products [1–7]. In most parts of the
world, ethanol is being used as ethanol-gasoline and ethanol-
diesel blends [1–10]. However, ethanol has also been success-
fully used as standalone fuels in internal combustion (IC) en-
gines without much adjustment in the configuration of vehicle
engines [11]. Use of ethanol as fuel can significantly reduce

the emission of certain hazardous chemicals in the environ-
ment [1–11].

Despite these advantages, use of ethanol as a fuel in IC
engines has certain problems. One such issue is the solubility
of ethanol and water in all proportions. In fact, it is difficult to
observe any differences between ethanol, water and ethanol-
water mixtures. Thus, there is always a temptation for adulter-
ating the ethanol fuel with water. In order to ensure the quality
of ethanol as a fuel it is essential that water adulteration in
ethanol should be carefully monitored for the following
reasons:

(i) Most of the components of IC engines are prone to degra-
dation when they come in contact of water [1, 2, 4, 7, 12].

(ii) Presence of water in ethanol causes the phase separation
in diesel-ethanol and gasoline-ethanol blends limiting
their utility as efficient fuels [1, 2, 4, 7–12].

In recent years, ethanol based fuel cell, known as direct
ethanol fuel cell (DEFC) has been considered as an alternate
to IC engines because of its high-energy efficiency [13, 14].
DEFC involves oxidation of ethanol in presence of oxygen
(C2H5OH+3O2→2 CO2+3H2O) [13, 14]. The presence of
water in ethanol can significantly reduce efficiency of DEFC
for a given volume of fuel. Therefore, monitoring of water
content in ethanol sample is also important to ensure maxi-
mum efficiency of DEFC.

8-anilinonaphthalene-1-sulfonic acid also known as
ANS, molecular structure shown in Fig. 1, is a fluores-
cence polarity probe [15, 16]. It has been used to study
various biological systems [16–21]. ANS shows enhance-
ment of intensity with a blue shift of fluorescence maxima
while going from a polar to non-polar system [15–24]. In
ethanol-water mixture, water is more polar than ethanol.
Therefore, ANS would show a decrease in fluorescence
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intensity with increase of water percentage in ethanol. In
literature, the loss of fluorescence of ANS in water is
attributed to quenching process arising due to electron
transfer from water to ANS molecule [15–24] The
polarity-sensing characteristic of ANS can be explored
for monitoring the adulteration of water in ethanol fuel.

The objective of the present work is to show that ANS,
a polarity probe, in combination of partial least square
(PLS) analysis [25–27] can be used for developing a sim-
ple, sensitive and fast analytical procedure for monitoring
the adulteration of water in ethanol fuels. In literature,
Karl-Fischer [28], electrochemistry [11], ultrasonic pa-
rameters [29], time-domain reflectrometry [30], capacitive
micro-sensor [31], infrared (IR) [32], Fourier transform
infrared (FTIR) [33] and NMR [33] based methods are
also available for the analysis of water in ethanol fuels.
However, the proposed procedure over the reported
methods has the advantage of providing a very simple,
fast and user-friendly way without involving any labori-
ous step for monitoring the water adulteration in ethanol.

Material and Methods

Chemicals and Sample Preparation

Ethanol was procured from local vendors from Chennai
(India). ANS was purchased from Sigma-Aldrich. Water
was distilled three times using KMnO4 and NaOH.
Ground water was collected from the well of IIT-Madras
campus (Chennai) and it is not suitable for drinking pur-
pose. Calibration set (C1) of eleven samples wherein eth-
anol is adulterated by water to different extent was pre-
pared. Amounts of ethanol and water in these samples are
summarised in Table 1. Two validations sets one made
using the tripled distilled water (V1) and other made
using ground water (V2) were also made. Amounts of
ethanol and water in these samples of both the validation

sets are summarized in Table 2. An aliquot of 10−3 M was
prepared by dissolving 15 mg of ANS in 50 mL of dry-
ethanol. 0.1 mL of the aliquot was added to 5 mL of each
of the 21 samples. The concentration of ANS in ethanol-
water mixture was found to be optimum in the range of
~(0.7–3)×10−5 M. At concentrations higher than this in-
ner filter effects will significantly affect the fluorescence
ANS. At very low concentration, it will be difficult to
measure the fluorescence of ANS, in particular in ethanol
samples with high amount of water adulteration and it is
mainly due to quenching of ANS fluorescence due to
electron transfer from water to ANS molecule. The cali-
bration sets were made in triplicates to verify the repro-
ducibility of the outcome of proposed procedure. The oth-
er two calibration sets were labelled as C2 and C3. Two
validations using triple distilled water and ground water
were prepared also prepared for each of these two calibra-
tion sets C2 and C3.

Fig. 1 Molecular formula of 8-anilinonaphthalene-1-sulfonic acid
(ANS)

Table 1 Ethanol and water % in various samples of calibrations set of
water adulterated ethanol fuel

Sample Ethanol (mL) Water (mL) Water % (V/V)

1 5.00 0.00 0.00

2 4.75 0.25 5.00

3 4.50 0.50 10.00

4 4.25 0.75 15.00

5 4.00 1.00 20.00

6 3.75 1.25 25.00

7 3.50 1.50 30.00

8 3.25 1.75 35.00

9 3.00 2.00 40.00

10 2.75 2.25 45.00

11 2.50 2.50 50.00

Table 2 Ethanol and water % in various samples of validation set of
water adulterated ethanol fuel

Sample Ethanol water Water % (V/V)

Validation set V1

1 4.875 0.125 2.5

2 4.625 0.375 7.5

3 4.375 0.625 12.5

4 4.125 0.875 17.5

5 3.875 1.125 22.5

Validation set V2

1 4.875 0.125 2.5

2 4.625 0.375 7.5

3 4.375 0.625 12.5

4 4.125 0.875 17.5

5 3.875 1.125 22.5
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Instrument and Data Acquisition

Fluormax-4 (Horiba Jobin Yvon) spectrofluorometer
equipped with Xenon lamp of 150 W was used an exci-
tation source. Excitation and emission band passes were
set to 2.5 nm. Fluorescence data were collected by keep-
ing the excitation monchromator at 360 nm (the absor-
bance maxima of ANS in pure ethanol) and scanning the
emission monochromator the wavelength range of 380–
700 nm. There was no noticeable background fluores-
cence; however, it can be taken care by subtracting the
blank spectra (i.e., the fluorescence data acquired for the
ethanol-water mixture before the addition of ANS) from
the ANS fluorescence data set acquired for that particular
ethanol-water mixture. The λmax of emission of ANS in
both the ethanol samples (spectroscopic-dried and the
commercial) were found to be~473. It is characteristic
wavelength of emission for ANS in ethanol. It showed
that ethanol sample used in the present work is similar
to spectroscopic ethanol sample and there is no noticeable
difference in their polarities. It further indicates that there
is no noticeable difference in the presence of water in
commercial ethanol and spectroscopic grade ethanol.

Theory

Partial Least Square (PLS) Analysis

Partial least square (PLS) analysis [25–27] is a chemometric
method used for the quantification of the components of our
interest. Conventional analytical methods work, only if inten-
sity values are directly proportional to the concentrations of
the components of our interest. Whereas, PLS analysis can be
safely used to analyse the components even if there is certain
amount of nonlinearity between the spectral data set and their
concentrations. PLS involves the simultaneous analysis of all
the spectral variables therefore a better calibration model can
be created [25–27]. Mathematically, PLS involves the simul-
taneous decomposition of X (independent variables e.g., spec-
tral intensity values etc.) and Y (dependent set of variables
e.g., concentration values) block data sets. Decomposition of
the data sets are carried out in such a way that PLS model
explains maximum variation of the data set and at the same
time also achieve maximum correlation between X and Y

Fig. 2 Fluorescence spectra of
ANS in water adulterated ethanol
samples

Fig. 3 Linear regression plot between fluorescence intensity of ANS at
473 nm and water % in ethanol fuel

Table 3 Variation of Energy Shift (Cm−1) with amount of water in
ethanol fuel

Sample Water % (V/V) in adulterated ethanol fuel Energy shift Cm−1

1 0 21097.05

2 5 21052.63

3 10 20576.13

4 15 20661.16

5 20 20576.13

6 25 20491.80

7 30 20618.56

8 35 20491.80

9 40 20491.80

10 45 20491.80

11 50 20283.97

J Fluoresc (2015) 25:1055–1061 1057



block data sets [25–27]. Mathematically, it can be shown
using Eqs. 1 and 2

X ¼ TPT þ EX ð1Þ
Y ¼ UQT þ EY ð2Þ

A correlation between X and Y blocks are usually achieved
using Eq. 3

U ¼ TBþ E ð3Þ

In the above equations, dimensions of X and Yare I×J and
I×N, respectively. T (I×F) and U (I×N) are the score matri-
ces, P (J×F) and Q (N×N) are the loading matrices of X (I×J)
and Y (I×F) block. B is the regression matrix of dimension
F×N. EX, EYand E are the residual matrices of dimension are
I×J, I×N and I×N, respectively. In the above Eqs. 1–3, I and J
indicate number of samples and spectral variable, respectively.
F is the number of factors used to create PLS model and N is
the number of dependent variables (i.e., number of component
(e.g., water percentage) whose concentration need to be cali-
brated). In the present work, the values of I, J, F and N are
equal to 11, 321, 2 and 1 respectively. Hence, the dimensions
of spectral (X) and concentration data matrices (Y) are 11×
321 and 11×1, respectively.

Statistical Parameters to Evaluate the Robustness o PLS
Model

Root mean square error of calibration (RMSEC) [26, 27] and
root mean square error of prediction (RMSEP) [26, 27] and
square of correlation coefficient (R2) [34] are statistical param-
eters that could be used to measure the accuracy of the predic-
tion between the actual and predicted concentration of the
components of our interest. RMSEC or RMSEP can be calcu-
lated using Eq. 4 and R2 can be calculated using Eq. 5.

RMSEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where Yact,i and Ypred,i are the actual and model predicted
properties of the ith sample of calibration set, and I is the total
number of samples used to create the calibration model. We
can obtain RMSEP value if we use Eq. 4 when used for the
validation set.

R2 ¼ 1‐

X
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X
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where Ymean is the mean value of the Yact data set. In principle,
a calibration model should have R2 value close to one and
RMSEC and RMSEP value close to zero.

Software Used

PLS-Toolbox 5.0.3 written inMATLAB language was used to
carry out PLS analysis.

Results and Discussion

The fluorescence spectra of ANS in water adulterated ethanol
samples of calibration set C1 is shown in Fig. 2. As reported in
literature, it could be seen that (i) ANS shows maximum fluo-
rescence intensity in ethanol sample at ~473 nm and (ii) fluo-
rescence intensity of ANS decreases with red shift as the
amount of water in ethanol-water mixture increases. As
discussed earlier, the loss of fluorescence is primarily due to
process of charge transfer quenching. A linear regression was
carried out between the fluorescence intensity values of ANS
at 473 nm against the water percentage. The linear regression
plot is shown in Fig. 3. It could be seen that with linear

Fig. 4 RMSECV versus number of latent variable plot of PLS model

Table 4 Percentage of variance explained by PLS model of different
factors

Factors (or
latent variables)

Variance % of X block
(spectral data set)

Variance % of Y block
(concentration data set)

1 91.97 84.83

2 99.94 99.92

3 99.97 99.95

4 99.98 99.99

5 99.98 100.00

6 99.99 100.00

7 99.99 100.00

8 99.99 100.00

9 99.99 100.00

10 99.99 100.00

11 99.99 100.00
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regression approach it is difficult to make a calibration model
for the analysis of water adulterated ethanol samples. Better
correlation between concentration and spectral data set is a
must for making a reliable calibration model. The variation
of energy shift (1/λmax (nm))×107 cm−1 can be used for the
estimation of water in ethanol-water mixture over entire range.
However, this procedure is limited by the fact that variation of
emission wavelength (i.e., the energy of transition from excit-
ed to ground state) of ANS with amount of water is not sen-
sitive enough to detect small to moderate differences of water
concentrations in the ethanol-water mixtures. Variation of en-
ergy with water concentration is given in Table 3. Therefore, it
makes sense to take all the spectral variables simultaneously
and subject them to PLS analysis. As discussed earlier, PLS
analysis ensures covariance between spectral (X) and concen-
tration (Y) data matrices and hence improves the robustness
and prediction accuracy of the calibration model.

Mean centred spectral data set of calibration set C1 was
subjected to PLS analysis. In order to find the optimum num-
ber of factors, leave one out cross validation (LOOCV) [26,
27] approach was used, the root mean square error of cross
validation (RMSECV) [26, 27] as shown in Fig. 4 was found
to be minimum for a two latent variable PLS model. It also
correlates well with the fact that there are two solvents of
different polarities around the ANSmolecule in the calibration

sets consisting of water adulterated ethanol samples. There-
fore, we preferred two latent variables PLS model to create the
calibration model. Using the obtained PLS model, it is possi-
ble to explain more than 99.9 % variance of both spectral and
concentration data matrices. The percentage of variance cap-
tured by the PLS model with different numbers of latent var-
iables (or factors) are summarised in Table 4. It could be
observed that PLS models with factors greater than two ex-
plained equal amount of variances of the data sets but with
added complexity. It is to be noted with the addition of each
factor in PLS model the complexity increases which is against
the principle of parsimony [26, 27].

The biplot [26, 27] that allows the study of the correlation
of various samples (i.e., score) and the spectral variables (i.e.,
loading vectors) in a single plot is given in Fig. 5. It could be
seen that samples have maximum variation along the first
latent variable. It could also be seen that with increase in water
concentration LV1 score values of ethanol-water samples vary
form the negative to positive values though the variation is not
linear. This nonlinearity is in correspondence with the nonlin-
ear variation of ANS fluorescence along the intensity and
wavelength (i.e., the energy) axes. It could also be seen that
first 100–125 spectral variables are more comparatively more

Table 5 Actual and predicted water percentage in water adulterated
ethanol fuel

Sample Actual water % (V/V) Predicted water % (V/V) RMSEP

Validation set V1

1 2.5 2.73 1.087
2 7.5 6.16

3 12.5 10.70

4 17.5 17.98

5 22.5 23.27

Validation set V2

1 2.5 2.95 1.541
2 7.5 7.988

3 12.5 14.98

4 17.5 19.01

5 22.5 24.23

Fig. 7 PLS predicted and actual water % in ethanol fuel

Fig. 5 Biplot of PLS model explaining the relation between sample
and variables . Numerical values indicate the sample and variable
numbers

Fig. 6 Actual and PLS predicted water % in ethanol fuel at internal
validation (i.e. cross-validation) step
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informative. The predicted water concentration in ethanol-
water mixtures in LOOCVapproach i.e., ‘the internal valida-
tion’ results of PLS model is shown in Fig. 6. There is close
correspondence between the actual and predicted water con-
centration of the calibration set. Briefly, LOOCV approach
involves development of PLS model using all the samples
except one and then the model is used to predict the concen-
tration of left one, the procedure repeated so that each sample
is left and predicted once.

The actual and predicted concentration of water in adulter-
ated ethanol samples of PLSmodel is shown in Fig. 7. It could
be seen that there is one to one correspondence between the
actual and predicted water concentration. It is also evident
from RMSEC and R2 values of 0.46 % and 0.999, respective-
ly. The two validation sets V1 (prepared using tripled distilled
water) and V2 (prepared using ground water) each consisting
of five samples were subjected to the obtained PLS model.
The predicted concentration of water samples in adulterated
ethanol samples of validation sets are summarised in Table 5.
It is observed that PLS model makes prediction with great
amount of accuracy for each of the five samples of both the
validation set. It is also evident from small RMSEP values
(summarised in Table 5) for both the validation sets.

The entire calibration procedure was repeated on other two
calibration sets (C2 and C3) of the triplicates. Various statistical
parameters RMSEC, R2 and RMSEP values of these twomodels
were calculated and summarised in Table 6. The obtained results
clearly showed that it is possible to make accurate predictions of
water percentage in water adulterated ethanol samples.

As discussed earlier that Karl-Fischer [28], electrochemis-
try [11], ultrasonic parameters [29], time-domain
reflectrometry [30], capacitive micro-sensor [31], infrared
(IR) [32], Fourier transform infrared (FTIR) [33] and NMR
[33] based methods are available for the analysis of water in
ethanol fuels. These methods are also reported to make accu-
rate predictions of water in water-ethanol mixtures. However,
the proposed procedure in the current work over the reported
methods has the advantage of providing a very simple, fast
and user-friendly way without involving any laborious step
for monitoring the water adulteration in ethanol fuel. The only
care that is required is the preparation of ANS solution and its
addition to the samples in the fixed amount in the optimum
concentration range. Otherwise, the procedure is robust and
sensitive to quantify water adulteration in ethanol fuel.

Conclusions

In the present work, a simple and sensitive analytical proce-
dure was developed for monitoring the water adulteration in
ethanol fuel. The proposed procedure involves PLS analysis
of the fluorescence data acquired for ANS in ethanol-water
samples. The obtained PLS model was also successfully used
to determine the amount of ground water adulteration level in
ethanol fuel. The robustness of PLS model is evident from
small RMSEC and RMSEP values and unit R2 value.
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